Error Bounded Schemes for Time-dependent Hyperbolic Problems
نویسنده
چکیده
In this paper we address the error growth in time for hyperbolic problems on first order form. The energy method is used to study when an error growth or a fixed error bound is obtained. It is shown that the choice of boundary procedure is a crucial point. Numerical experiments corroborate the theoretical findings. 1. Introduction. Stable approximations of hyperbolic problems on first order form often exhibit a linear (or near linear) error growth in time, see for example [15],[13],[6]. In many of those cases, the wave is restricted or trapped in the domain for long times. Typical examples include periodic problems or problems where the wave is trapped in cavities. However, also cases with a definite bound on the error as time passes can be observed. Typically, in such cases, the wave propagates through the domain for a limited time as in an inflow-outflow problem. To initiate our investigation we consider the problem
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملExplicit Runge-Kutta Residual Distribution
In this paper we construct spatially consistent second order explicit discretizations for time dependent hyperbolic problems, starting from a given Residual Distribution (RD) discrete approximation of the steady operator. We explore the properties of the RD mass matrices necessary to achieve consistency in space, and finally show how to make use of second order mass lumping to obtain second ord...
متن کاملInverse hyperbolic problems with time - dependent coefficients
We consider the inverse problem for the second order self-adjoint hyperbolic equation in a bounded domain in R n with lower order terms depending analytically on the time variable. We prove that, assuming the BLR condition, the time-dependent Dirichlet-to-Neumann operator prescribed on a part of the boundary uniquely determines the coefficients of the hyperbolic equation up to a diffeomorphism ...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملAdditive Schemes for Systems of Time-Dependent Equations of Mathematical Physics
Additive difference schemes are derived via a representation of an operator of a time-dependent problem as a sum of operators with a more simple structure. In doing so, transition to a new time level is performed as a solution of a sequence of more simple problems. Such schemes in various variants are employed for approximate solving complicated time-dependent problems for PDEs. In the present ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2007